Multi agent gathering waste system

  1. LOZANO MURCIEGO, Álvaro 1
  2. VILLARRUBIA GONZÁLEZ, Gabriel 1
  3. LÓPEZ BARRIUSO, Alberto 1
  4. HERNÁNDEZ DE LA IGLESIA, Daniel 2
  5. REVUELTA HERRERO, Jorge 2
  1. 1 ACM Students Member
  2. 2 ACM Students Members
Revue:
ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal

ISSN: 2255-2863

Année de publication: 2015

Volumen: 4

Número: 4

Pages: 9-22

Type: Article

DOI: 10.14201/ADCAIJ201544922 DIALNET GOOGLE SCHOLAR lock_openAccès ouvert editor

D'autres publications dans: ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal

Objectifs de Développement Durable

Résumé

Along this paper, we present a new multi agent-based system to gather waste on cities and villages. We have developed a low cost wireless sensor prototype to measure the volume level of the containers. Furthermore a route system is developed to optimize the routes of the trucks and a mobile application has been developed to help drivers in their working days. In order to evaluate and validate the proposed system a practical case study in a real city environment is modeled using open data available and with the purpose of identifying limitations of the system.

Références bibliographiques

  • Ayuntamiento de Málaga. (n.d.). Contenedores para papel y cartón - Conjuntos de datos - Datos abiertos Ayto. Málaga. Retrieved February 8, 2016, from http://datosabiertos.malaga.eu/dataset/contenedores-para-papel-y-carton
  • Barbarosoglu, G., & Ozgur, D. (1999). A tabu search algorithm for the vehicle routing problem. Computers & Operations Research, 26(3), 255–270. http://doi.org/10.1016/S0305-0548(98)00047-1
  • Dargie, W. W., & Poellabauer, C. (2010). Fundamentals of Wireless Sensor Networks: Theory and Practice (Vol. 5). John Wiley & Sons. Retrieved from https://books.google.com/books?id=8c6k0EVr6rMC&pgis=1
  • Eksioglu, B., Vural, A. V., & Reisman, A. (2009). The vehicle routing problem: A taxonomic review. Computers & Industrial Engineering, 57(4), 1472–1483. http://doi.org/10.1016/j.cie.2009.05.009
  • ENEVO ®. (2016). Enevo – Optimising Waste Collection. Retrieved February 5, 2016, from https://www.enevo.com/
  • Fisher, M. L. (1994). Optimal Solution of Vehicle Routing Problems Using Minimum K-Trees. Operations Research, 42(4), 626–642. http://doi.org/10.1287/opre.42.4.626
  • Gambardella, L. M., Taillard, E., & Agazzi, G. (1999). MACS-VRPTW: A Multiple Ant Colony System for Vehicle Routing Problems with Time Windows. Retrieved from http://dl.acm.org/citation.cfm?id=870474
  • Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13(5), 533–549. http://doi.org/10.1016/0305-0548(86)90048-1
  • Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Retrieved from http://dl.acm.org/citation.cfm?id=534133
  • GraphHopper. (2015). GraphHopper - OpenStreetMap Wiki. Retrieved February 8, 2016, from http://wiki.openstreetmap.org/wiki/GraphHopper
  • Gutierrez, J. M., Jensen, M., Henius, M., & Riaz, T. (2015). Smart Waste Collection System Based on Location Intelligence. Procedia Computer Science, 61, 120–127. http://doi.org/10.1016/j.procs.2015.09.170
  • Huang, M., & Hu, X. (2012). Large scale vehicle routing problem: An overview of algorithms and an intelligent procedure. International Journal of Innovative Computing, Information and Control, 8(8), 5809–5819.
  • Hunkeler, U., Truong, H. L., & Stanford-Clark, A. (2008). MQTT-S — A publish/subscribe protocol for Wireless Sensor Networks. In 2008 3rd International Conference on Communication Systems Software and Middleware and Workshops (COMSWARE ’08) (pp. 791–798). IEEE. http://doi.org/10.1109/COMSWA.2008.4554519
  • Internet of Things, Smart Spaces, and Next Generation Networks and Systems: 15th International Conference, NEW2AN 2015, and 8th Conference, ruSMART 2015, St.
  • Petersburg, Russia, August 26-28, 2015, Proceedings. (2015). Springer. Retrieved from https://books.google.com/books?id=XBNcCgAAQBAJ&pgis=1
  • Jens Lysgaard, A. N. L. R. W. E. (n.d.). A New Branch-and-Cut Algorithm for the Capacitated Vehicle Routing Problem. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.7.6581
  • Lysgaard, J., & Wøhlk, S. (2014). A branch-and-cut-and-price algorithm for the cumulative capacitated vehicle routing problem. European Journal of Operational Research, 236(3), 800–810. http://doi.org/10.1016/j.ejor.2013.08.032
  • Maher, M., & Puget, J.-F. (Eds.). (1998). Principles and Practice of Constraint Programming — CP98 (Vol. 1520). Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/3-540-49481-2
  • Mehta, M. (2015). Esp 8266?: a Breakthrough in Wireless Sensor Networks and, 6(8), 7–11.
  • Mora, A. M., & Squillero, G. (Eds.). (2015). Applications of Evolutionary Computation (Vol. 9028). Cham: Springer International Publishing. http://doi.org/10.1007/978-3-319-16549-3
  • OptaPlanner - Constraint satisfaction solver (JavaTM, Open Source). (n.d.). Retrieved February 3, 2016, from http://www.optaplanner.org/
  • Optimization, N. N. and E. (n.d.). Vehicle Routing Problem | Vehicle Routing Problem. Retrieved February 5, 2016, from http://neo.lcc.uma.es/vrp/vehicle-routing-problem/
  • Rochat, Y., & Taillard, É. D. (1995). Probabilistic diversification and intensification in local search for vehicle routing. Journal of Heuristics, 1(1), 147–167. http://doi.org/10.1007/BF02430370
  • Schelter, S., & Owen, S. (2012). Collaborative Filtering with Apache Mahout Categories and Subject Descriptors. Recommender Systems Challenge at ACM RecSys, i.
  • Shaw, P. (1998). Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems. Computer, 1520(Springer), 417–431. http://doi.org/10.1007/3-540-49481-2
  • Systems, E. (2015). ESP8266EX Datasheet, 1–31. Retrieved from https://www.adafruit.com/images/product-files/2471/0A-ESP8266__Datasheet__EN_v4.3.pdf
  • Wellness Telecom. (2013). E-WAS. Retrieved February 5, 2016, from http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=4947