Relaciones entre la composición corporal y las pruebas de velocidad, aceleración y cambios de dirección en estudiantes universitarios

  1. Toro-Román, V. 1
  2. Siquier-Coll, J. 1
  3. Bartolomé, I. 1
  4. Grijota, F.J. 1
  5. Maynar, M. 1
  6. Muñoz, D. 1
  1. 1 Universidad de Extremadura
    info

    Universidad de Extremadura

    Badajoz, España

    ROR https://ror.org/0174shg90

Journal:
Journal of sport and health research

ISSN: 1989-6239

Year of publication: 2021

Issue Title: Enero-Abril

Volume: 13

Issue: 1

Type: Article

More publications in: Journal of sport and health research

Abstract

The aim of this study was to analyse the possible influences of body composition above tests of speed, acceleration and changes of direction in university students, as well as differences between genders. One hundred fifty-five university students (men= 121; women= 34; age= 20.56 ± 1.23 years) participated in the study. Body composition and performance were evaluated in tests of 10 meters, 50 meters and 5x10 meters. The differences between gender and the correlations between the parameters of body composition and the times in the different tests were analysed. The results show better times in the speed tests in men, as well as a greater waist circumference, muscle percentage, muscle weight, body mass index (BMI) and waist hip ratio (WHI) (p <0.05). Positive correlations were observed between the times of the tests evaluated in the total of subjects and in men (p <0.05), but not in women. In the male group, the total weight, fat weight and fat percentage were directly related to time in all test. Contrarily, muscle weight and muscle percentage were inversely related (p <0.05). In the female gender, there was a direct correlation in the 50-meter test with fat weight, fat percentage, sum of folds and hip perimeter (p <0.05). In conclusion, a greater muscle mass and muscle percentage results in a better performance in the tests of 10 meters, 50 meters and 5x10 meters. However, a higher fat percentage and fat weight negatively influences the performance of the mentioned trials. Body composition could be an important control parameter for performance in speed tests and changes of direction.

Bibliographic References

  • Abe, T., Fukashiro, S., Harada, Y., y Kawamoto, K. (2001). Relationship Between Sprint Performance and Muscle Fascicle Length in Female Sprinters. Journal of Physiological Anthropology and Applied Human Science, 20(2), 141–147.
  • Abe, T., Kawamoto, K., Dankel, S. J., Bell, Z. W., Spitz, R. W., Wong, V., y Loenneke, J. P. (2019). Longitudinal associations between changes in body composition and changes in sprint performance in elite female sprinters. European Journal of Sport Science, 1–6.
  • Ackland, T. R., Lohman, T. G., Sundgot-Borgen, J., Maughan, R. J., Meyer, N. L., Stewart, A. D., y Müller, W. (2012). Current Status of Body Composition Assessment in Sport. Sports Medicine, 42(3), 227–249.
  • Babić, V., Čoh, M., y Dizdar, D. (2011). Diferences in kinematic parameters of athletes of different running quality. Biology of Sport, 28(2).
  • Barbieri, D., Zaccagni, L., Babić, V., Rakovac, M., MiÅ¡igoj-Duraković, M., y Gualdi-Russo, E. (2017). Body composition and size in sprint athletes. The Journal of Sports Medicine and Physical Fitness, 57(9), 1142–1146.
  • Bredella, M. A. (2017). Sex differences in body composition. In Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity (pp. 9–27). Springer.
  • Chaouachi, A., Manzi, V., Chaalali, A., Wong, del P., Chamari, K., y Castagna, C. (2012). Determinants analysis of change-of-direction ability in elite soccer players. The Journal of Strength & Conditioning Research, 26(10), 2667–2676.
  • Cheuvront, S. N., Carter, R., DeRuisseau, K. C., y Moffatt, R. J. (2005). Running Performance Differences between Men and Women. Sports Medicine, 35(12), 1017–1024.
  • Condello, G., Kernozek, T. W., Tessitore, A., y Foster, C. (2016). Biomechanical Analysis of a Change-of-Direction Task in College Soccer Players. International Journal of Sports Physiology and Performance, 11(1), 96–101.
  • Darrall-Jones, J. D., Jones, B., y Till, K. (2016). Anthropometric, Sprint, and High-Intensity Running Profiles of English Academy Rugby Union Players by Position. Journal of Strength and Conditioning Research, 30(5), 1348–58.
  • Delextrat, A., Grosgeorge, B., y Bieuzen, F. (2015). Determinants of performance in a new test of planned agility for young elite basketball players. International Journal of Sports Physiology and Performance, 10(2), 160–165.
  • Deliens, T., Deforche, B., De Bourdeaudhuij, I., y Clarys, P. (2015). Changes in weight, body composition and physical fitness after 1.5 years at university. European Journal of Clinical Nutrition, 69(12), 1318.
  • Gabbett, T. J., Kelly, J. N., y Sheppard, J. M. (2008). Speed, change of direction speed, and reactive agility of rugby league players. Journal of Strength and Conditioning Research, 22(1), 174–81.
  • Green, S. (1995). Measurement of anaerobic work capacities in humans. Sports Medicine, 19(1), 32–42.
  • Haugen, T., Tønnessen, E., y Seiler, S. (2015). 9.58 and 10.49: Nearing the Citius End for 100 m? International Journal of Sports Physiology and Performance, 10(2), 269–272.
  • Herbst, K. L., y Bhasin, S. (2004). Testosterone action on skeletal muscle. Current Opinion in Clinical Nutrition and Metabolic Care, 7(3), 271–7.
  • Hervás, G., Ruiz-Litago, F., Irazusta, J., Fernández-Atutxa, A., Fraile-Bermúdez, A., y Zarrazquin, I. (2018). Physical activity, physical fitness, body composition, and nutrition are associated with bone status in university students. Nutrients, 10(1), 61.
  • Hirsch, K. R., Smith-Ryan, A. E., Trexler, E. T., y Roelofs, E. J. (2016). Body composition and muscle characteristics of division I track and field athletes. Journal of Strength and Conditioning Research/National Strength & Conditioning Association, 30(5), 1231.
  • Jaworowski, A., Porter, M. M., Holmback, A. M., Downham, D., y Lexell, J. (2002). Enzyme activities in the tibialis anterior muscle of young moderately active men and women: relationship with body composition, muscle cross-sectional area and fibre type composition. Acta Physiologica Scandinavica, 176(3), 215–225.
  • Kanehisa, H., Ikegawa, S., Tsunoda, N., y Fukunaga, T. (1994). Cross-sectional areas of fat and muscle in limbs during growth and middle age. International Journal of Sports Medicine, 15(07), 420–425.
  • Karastergiou, K., Smith, S. R., Greenberg, A. S., y Fried, S. K. (2012). Sex differences in human adipose tissues–the biology of pear shape. Biology of Sex Differences, 3(1), 13.
  • Kin-Isler, A., Ariburun, B., Ozkan, A., Aytar, A., y Tandogan, R. (2008). The relationship between anaerobic performance, muscle strength and sprint ability in American football players. Isokinetics and Exercise Science, 16(2), 87–92.
  • Kumagai, K., Abe, T., Brechue, W. F., Ryushi, T., Takano, S., y Mizuno, M. (2000). Sprint performance is related to muscle fascicle length in male 100-m sprinters. Journal of Applied Physiology, 88(3), 811–816.
  • Lockie, R., Dawes, J., y Jones, M. (2018). Relationships between linear speed and lowerbody power with change-of-direction speed in national collegiate athletic association divisions I and II women soccer athletes. Sports, 6(2), 30.
  • Majumdar, A. S., y Robergs, R. A. (2011). The science of speed: Determinants of performance in the 100 m sprint. International Journal of Sports Science & Coaching, 6(3), 479–493.
  • Malina, R. M., y Geithner, C. A. (2011). Body composition of young athletes. American Journal of Lifestyle Medicine, 5(3), 262–278.
  • Mascherini, G., Castizo-Olier, J., Irurtia, I., Petri, C., y Galanti, G. (2018). Differences between the sexes in athletes’ body composition and lower limb bioimpedance values. Muscles Ligaments Tendons Journal, 7(4), 573–581.
  • Matlák, J., Tihanyi, J., y Rácz, L. (2016). Relationship between reactive agility and change of direction speed in amateur soccer players. Journal of Strength and Conditioning Research, 30(6), 1547–1552.
  • Mayhew, J. L., Hancock, K., Rollison, L., Ball, T. E., y Bowen, J. C. (2001). Contributions of strength and body composition to the gender difference in anaerobic power. Journal of Sports Medicine and Physical Fitness, 41(1), 33.
  • Mazić, S., Lazović, B., Đelić, M., Suzić-Lazić, J., Aćimović, T., y Brkić, P. (2014). Body composition assessment in athletes: a systematic review. Medicinski Pregled, 67(7–8), 255–260.
  • Melvin, M. N., Smith-Ryan, A. E., Wingfield, H. L., Ryan, E. D., Trexler, E. T., y Roelofs, E. J. (2014). Muscle Characteristics and Body Composition of NCAA Division I Football Players. Journal of Strength and Conditioning Research, 28(12), 3320–3329.
  • Meylan, C., McMaster, T., Cronin, J., Mohammad, N. I., Rogers, C., y DeKlerk, M. (2009). Single-Leg Lateral, Horizontal, and Vertical Jump Assessment: Reliability, Interrelationships, and Ability to Predict Sprint and Change-of-Direction Performance. Journal of Strength and Conditioning Research, 23(4), 1140–1147.
  • Miller, A. E. J., MacDougall, J. D., Tarnopolsky, M. A., y Sale, D. G. (1993). Gender differences in strength and muscle fiber characteristics. European Journal of Applied Physiology and Occupational Physiology, 66(3), 254–262.
  • Morin, J.-B., Bourdin, M., Edouard, P., Peyrot, N., Samozino, P., y Lacour, J.-R. (2012). Mechanical determinants of 100-m sprint running performance. European Journal of Applied Physiology, 112(11), 3921–3930.
  • Nimphius, S., McGuigan, M. R., y Newton, R. U. (2010). Relationship between strength, power, speed, and change of direction performance of female softball players. Journal of Strength and Conditioning Research, 24(4), 885–95.
  • Perez-Gomez, J., Rodriguez, G. V., Ara, I., Olmedillas, H., Chavarren, J., GonzálezHenriquez, J. J., … Calbet, J. A. L. (2008). Role of muscle mass on sprint performance: gender differences? European Journal of Applied Physiology, 102(6), 685–694.
  • Popowczak, M., Rokita, A., Świerzko, K., Szczepan, S., Michalski, R., y Świerzko, K., (2019). Are Linear Speed and Jumping Ability Determinants of Change of Direction Movements in Young Male Soccer Players? Journal of Sports Science & Medicine, 18(1), 109.
  • Porta, J., Galiano, D., Tejedo, A., y González, J. M. (1993). Valoración de la composición corporal. Utopías y realidades. In F. Esparza (Ed.), Manual de Cineantropometría. Monografías. (pp. 113–170). Madrid.
  • Russ, D. W., Lanza, I. R., Rothman, D., y KentBraun, J. A. (2005). Sex differences in glycolysis during brief, intense isometric contractions. Muscle & Nerve, 32(5), 647–655.
  • Shi, H., y Clegg, D. J. (2009). Sex differences in the regulation of body weight. Physiology & Behavior, 97(2), 199–204.
  • Stevens, J., Katz, E. G., y Huxley, R. R. (2010). Associations between gender, age and waist circumference. European Journal of Clinical Nutrition, 64(1), 6.
  • Suchomel, T. J., Nimphius, S., y Stone, M. H. (2016). The Importance of Muscular Strength in Athletic Performance. Sports Medicine, 46(10), 1419–1449.
  • Thomas, T. D. C., Comfort, P., y Jones, P. A. (2018). Comparison of change of direction speed performance and asymmetries between team-sport athletes: Application of change of direction deficit. Sports, 6(4), 174.
  • Weber, C. L., Chia, M., y Inbar, O. (2006). Gender differences in anaerobic power of the arms and legs-a scaling issue. Medicine and Science in Sports and Exercise, 38(1), 129–37.
  • Weyand, P. G., Sternlight, D. B., Bellizzi, M. J., y Wright, S. (2000). Faster top running speeds are achieved with greater ground forces not more rapid leg movements. Journal of Applied Physiology, 89(5), 1991–1999.