Efectos de normalización del electroencefalograma cuantitativo utilizando neurorretroalimentación de puntuaciones Z de 4 canales en tiempo real para niños con trastornos de aprendizajedatos preliminares

  1. Rubén Pérez-Elvira
  2. Javier Oltra-Cucarella
  3. José Antonio Carrobles
Revista:
Psicología conductual = behavioral psychology: Revista internacional de psicología clínica y de la salud

ISSN: 1132-9483

Año de publicación: 2021

Volumen: 29

Número: 1

Páginas: 191-206

Tipo: Artículo

Otras publicaciones en: Psicología conductual = behavioral psychology: Revista internacional de psicología clínica y de la salud

Resumen

Los niños con trastornos de aprendizaje (TA) pueden manifestar dificultades en la lectura a nivel de palabra, comprensión de textos, escritura o matemáticas. Algunos estudios han mostrado la eficacia de la neurorretroalimentación (NR) en la mejora de las habilidades de aprendizaje a través del condicionamiento operante de las ondas cerebrales en niños con TA. El objetivo de este trabajo fue mostrar datos preliminares de la eficacia de la neurorretroalimentación de puntuaciones z en tiempo real (LZT) para la normalización del electroencefalograma cuantitativo (QEEG) en escolares con TA. Participaron 28 niños de entre 10-15 años de edad con TA. Se aplicaron diez sesiones de 30 minutos de LZT guiado por QEEG utilizando retroalimentación de alta preferencia de los sujetos. Tras 10 sesiones de LZT guiado por QEEG, los participantes mostraron mejoras estadísticamente significativas en la normalización del QEEG y una mejora de pequeña a media estadísticamente significativa en la “Lista de comprobación cognitiva y emocional”. Los resultados sugieren que LZT-NR produce una tendencia hacia la normalización de las ondas cerebrales en niños con TA, y podría suponer una alternativa terapéutica o coadyuvante junto con la intervención cognitiva.

Referencias bibliográficas

  • Applied Neuroscience. (2018). NeuroGuide (Version 2.9.1) [Computer software]. https://appliedneuroscience.com/product/neuroguide/
  • Arns, M., Drinkenburg, W., & Leon Kenemans, J. (2012). The effects of QEEG-informed Neurofeedback in ADHD: An open-label pilot study. Applied Psychophysiology and Biofeedback, 37(3), 171-180. doi: 10.1007/s10484-012-9191-4
  • Azizi, A., Drikvand, F. M., & Sepahvandi, M. A. (2018). Comparison of the effect of cognitive rehabilitation and neurofeedback on sustained attention among elementary school students with specific learning disorder: A preliminary randomized controlled clinical trial. Applied Psychophysiology and Biofeedback, 43(4), 301-307. doi: 10.1007/s10484-018-9410-8
  • BrainMaster Technologies (2012). Discovery-20 [Apparatus]. https://brainmaster.com/ product/discovery-20-series/
  • BrainMaster Technologies (2013). BrainAvatar (Version 4.6.4) [Computer software]. https://brainmaster.com/product/brainavatar-4-0-for-atlantis/
  • Breteler, M. H. M., Arns, M., Peters, S., Giepmans, I., & Verhoeven, L. (2010). Improvements in spelling after QEEG-based neurofeedback in dyslexia: A randomized controlled treatment study. Applied Psychophysiology and Biofeedback, 35(1), 5-11. doi: 10.1007/s10484-009-9105-2
  • Carrobles, J. A. (2016). Bio/neurofeedback. Clínica y Salud, 27(3), 125-131. doi: 10.1016/j.clysa.2016.09.003
  • Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159. doi: 10.1037/0033-2909.112.1.155
  • Collura, T. (2008, April). Whole-head normalization using live z-scores for connectivity training. Neuroconnections. http://www.brainm.com/software/pubs/tfc/collura%20nc %20 z%201.pdf.
  • Collura, T. (2014). Technical foundations of neurofeedback. New York, NY: Routledge, Taylor & Francis Group. Collura, T. (2016). Live z-score Neurofeedback. Biofeedback, 44(4), 212-217. doi: 10.5298/1081-5937-44.4.01
  • Collura, T., Guan, J., Tarrant, J., Bailey, J., & Starr, F. (2010). EEG biofeedback case studies using Live z-score training and a normative database. Journal of Neurotherapy, 14(1), 22-46. doi: 10.1080/10874200903543963
  • Electro-Cap Internacional (1982). ECI electro-cap [apparatus]. https://electro-cap.com/ index.cfm/caps/
  • Fenger, T. N. (1998). Visual-motor integration and its relation to EEG neurofeedback brain wave patterns, reading, spelling, and arithmetic achievement in attention deficit disordered and learning disabled students. Journal of Neurotherapy, 3(1), 9-18. doi: 10.1300/J184v03n01_02
  • Fisher, W., Piazza, C. C., Bowman, L. G., Hagopian, L. P., Owens, J. C., & Slevin, I. (1992). A comparison of two approaches for identifying reinforcers for persons with severe and profound disabilities. Journal of Applied Behavior Analysis, 25(2), 491-498. doi: 10.1901/jaba.1992.25-491
  • Fletcher, J. M., & Grigorenko, E. L. (2017). Neuropsychology of learning disabilities: The past and the future. Journal of the International Neuropsychological Society, 23(9-10), 930- 940. doi: 10.1017/S1355617717001084
  • Groeneveld, K. M., Mennenga, A. M., Heidelberg, R. C., Martin, R. E., Tittle, R. K., Meeuwsen, K. D., Walker, L. A., & White, E. K. (2019). Z-score neurofeedback and heart rate variability training for adults and children with symptoms of attentiondeficit/hyperactivity disorder: A retrospective study. Applied Psychophysiology and Biofeedback. doi: 10.1007/s10484-019-09439-x
  • Hanslmayr, S., Sauseng, P., Doppelmayr, M., Schabus, M., & Klimesch, W. (2005). Increasing Individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Applied Psychophysiology and Biofeedback, 30(1), 1- 10. doi: 10.1007/s10484-005-2169-8
  • Hughes, J. R., & John, E. R. (1999). Conventional and quantitative electroencephalography in psychiatry. The Journal of Neuropsychiatry and Clinical Neurosciences, 11(2), 190- 208. doi: 10.1176/jnp.11.2.190
  • Jacobs, E. H. (2006). Neurofeedback treatment of two children with learning, attention, mood, social, and developmental deficits. Journal of Neurotherapy, 9(4), 55-70. doi: 10.1300/J184v09n04_06
  • Kaiser, D. A., & Othmer, S. (2000). Effect of neurofeedback on variables of attention in a large multi-center trial. Journal of Neurotherapy, 4(1), 5-15. doi: 10.1300/J184v04n01_02
  • Kaufman, A. S., Flanagan, D. P., Alfonso, V. C., & Mascolo, J. T. (2006). Test review: Wechsler intelligence scale for children, 4th ed. (WISC-IV). Journal of Psychoeducational Assessment, 24(3), 278-295. doi: 10.1177/0734282906288389
  • Koberda, J. L., Moses, A., Koberda, L., & Koberda, P. (2012). cognitive enhancement using 19-electrode Z -score neurofeedback. Journal of Neurotherapy, 16(3), 224-230. doi: 10.1080/10874208.2012.705769
  • Krigbaum, G., & Wigton, N. L. (2014). When discussing neurofeedback, does modality matter? Neuroregulation, 1(1), 48-60. doi: 10.15540/nr.1.1.48
  • Krigbaum, G., & Wigton, N. L. (2015a). A methodology of analysis for monitoring treatment progression with 19-channel z-score neurofeedback (19ZNF) in a single-subject design. Applied Psychophysiology and Biofeedback, 40(3), 139-149. doi: 10.1007/s10484- 015-9274-0
  • Krigbaum, G., & Wigton, N. L. (2015b). A methodology of analysis for monitoring treatment progression with 19-channel z-score neurofeedback (19ZNF) in a single-subject design. Applied Psychophysiology and Biofeedback, 40(3), 139-149. doi: 10.1007/s10484- 015-9274-0
  • Kropotov, J. (2009). Methods of neurotherapy. In Quantitative EEG, event-related potentials and neurotherapy (pp. 469-505). San Diego, CA: Elsevier. doi: 10.1016/B978-0-12- 374512-5.00023-2
  • Kropotov, J. (2016). Functional neuromarkers for psychiatry. Cambridge, MA: Academic Press Inc.
  • Lindsay, G. (2007). Educational psychology and the effectiveness of inclusive education/mainstreaming. British Journal of Educational Psychology, 77(1), 1-24. doi: 10.1348/000709906X156881
  • Mangum, A., Fredrick, L., Pabico, R., & Roane, H. (2012). The role of context in the evaluation of reinforcer efficacy: Implications for the preference assessment outcomes. Research in Autism Spectrum Disorders, 6(1), 158-167. doi: 10.1016/j.rasd.2011.04.001
  • Medici, D. (2018). Neurofeedback versus pharmacological intervention in the treatment of childhood attention deficit/hyperactivity Disorder (ADHD): First spanish clinical neuropsychological study. American Journal of Applied Psychology, 7(5), 57. doi: 10.11648/j.ajap.20180705.11
  • Morris, S. B., & DeShon, R. P. (2002). Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychological Methods, 7(1), 105-125. doi: 10.1037/1082-989X.7.1.105
  • Ochi, Y., Laksanasopin, T., Kaewkamnerdpong, B., & Thanasuan, K. (2017). Neurofeedback game for attention training in adults. 2017 10th Biomedical Engineering International Conference (BMEiCON), 1-5. doi: 10.1109/BMEiCON.2017.8229113
  • Orlando, P. C., & Rivera, R. O. (2004). Neurofeedback for elementary students with identified learning problems. Journal of Neurotherapy, 8(2), 5-19. doi: 10.1300/J184v08n02_02
  • Orozco Cazco, G. H., Tejedor Tejedor, F. J., & Calvo Álvarez, M. I. (2016). Meta-análisis sobre el efecto del software educativo en alumnos con necesidades educativas especiales [Meta-analysis on the effect of educational software on students with special educational needs]. Revista de Investigación Educativa, 35(1), 35. doi: 10.6018/rie.35.1.240351
  • Pérez-Elvira, R., Carrobles, J., López Bote, D., & Oltra-Cucarella, J. (2019). Efficacy of Live zscore neurofeedback training for chronic insomnia: A single-case study. Neuroregulation, 6(2), 93-101. doi: 10.15540/nr.6.2.93
  • Pérez-Elvira, R., López Bote, D. J., Guarino, S., Agudo Juan, M., De León, R. J., Feiner, T., & Perez, B. (2018). Neurometric results of a case series using live z-scores neurofeedback. International Journal of Psychophysiology, 131, S139-S140. doi: 10.1016/j.ijpsycho.2018.07.375
  • Piazza, C. C., Fisher, W. W., Hagopian, L. P., Bowman, L. G., & Toole, L. (1996). Using a choice assessment to predict reinforcer effectiveness. Journal of Applied Behavior Analysis, 29(1), 1-9. doi: 10.1901/jaba.1996.29-1
  • Rastegar, N., Dolatshahi, B., & Rezaee Dogahe, E. (2016). The effect of neurofeedback training on increasing sustained attention in veterans with posttraumatic stress disorder. Practice in Clinical Psychology, 4(2). doi: 10.15412/J.JPCP.06040204
  • Soutar, R. G. (2018). Holistic neurointegration: The new mind model. A bio-psycho-social qEEG guided neurofeedback method. Atlanta, GA: New Mind Academy.
  • Stoller, L. (2011). Z-score training, combinatorics, and phase transitions. Journal of Neurotherapy, 15(1), 35-53. doi: 10.1080/10874208.2010.545758
  • Thatcher, R. W. (2013). Latest developments in Live z-score training: Symptom check list, phase reset, and Loreta z-score biofeedback. Journal of Neurotherapy, 17(1), 69-87. doi: 10.1080/10874208.2013.759032
  • Walker, J. E. (2010). Recent advances in quantitative EEG as an aid to diagnosis and as a guide to neurofeedback training for cortical hypofunctions, hyperfunctions, disconnections, and hyperconnections: Improving efficacy in complicated neurological and psychological disorders. Applied Psychophysiology and Biofeedback, 35(1), 25-27. doi: 10.1007/s10484-009-9107-0
  • Walker, J. E. (2011). QEEG-guided neurofeedback for recurrent migraine headaches. Clinical EEG and Neuroscience, 42(1), 59-61. doi: 10.1177/155005941104200112
  • Wang, J.-R., & Hsieh, S. (2013). Neurofeedback training improves attention and working memory performance. Clinical Neurophysiology, 124(12), 2406-2420. doi: 10.1016/j.clinph.2013.05.020
  • Wigton, N., & Krigbaum, G. (2015). A review of qEEG-guided neurofeedback. Neuroregulation, 2(3), 149-155. doi: 10.15540/nr.2.3.149
  • Wigton, N. L. (2013). Clinical perspectives of 19-channel z-score neurofeedback: Benefits and limitations. Journal of Neurotherapy, 17(4), 259-264. doi: 10.1080/10874208.2013.847142
  • Wigton, N. L., & Krigbaum, G. (2015). Attention, executive function, behavior, and electrocortical function, significantly improved with 19-channel z-score neurofeedback in a clinical setting: A pilot study. Journal of Attention Disorders, 23(4), 398-408. doi: 10.1177/1087054715577135
  • Zoefel, B., Huster, R. J., & Herrmann, C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. Neuroimage, 54(2), 1427-1431. doi: 10.1016/j.neuroimage.2010.08.078