Relaciones entre la composición corporal y las pruebas de velocidad, aceleración y cambios de dirección en estudiantes universitarios

  1. Toro-Román, V. 1
  2. Siquier-Coll, J. 1
  3. Bartolomé, I. 1
  4. Grijota, F.J. 1
  5. Maynar, M. 1
  6. Muñoz, D. 1
  1. 1 Universidad de Extremadura
    info

    Universidad de Extremadura

    Badajoz, España

    ROR https://ror.org/0174shg90

Revista:
Journal of sport and health research

ISSN: 1989-6239

Año de publicación: 2021

Título del ejemplar: Enero-Abril

Volumen: 13

Número: 1

Tipo: Artículo

Otras publicaciones en: Journal of sport and health research

Resumen

El objetivo del presente estudio fue analizar las relaciones entre composición corporal y pruebas de velocidad, aceleración y cambios de dirección en universitarios, así como las diferencias entre género. Ciento cincuenta y cinco estudiantes universitarios (hombres=121; mujeres=34; edad=20,56±1,23 años) participaron en el estudio. Se evaluó la composición corporal y el rendimiento en las pruebas de 10 metros, 50 metros y 5x10 metros. Se analizaron las diferencias entre género y las correlaciones existentes entre los parámetros de composición corporal y los tiempos en las distintas pruebas. Los resultados muestran mejores tiempos en las pruebas de velocidad en hombres, así como un mayor perímetro de cintura, porcentaje muscular, peso muscular, índice de masa corporal (IMC) e índice cintura- cadera (ICC) (p<0,05). Se observaron correlaciones positivas entre los tiempos de las pruebas evaluadas en el total de sujetos y en hombres (p<0,05), y no así en mujeres. En el grupo masculino, el peso total, peso graso y el porcentaje graso se relacionó directamente con el tiempo en todas las pruebas, por el contrario, el peso muscular y porcentaje muscular se relacionaron inversamente (p<0,05). En el género femenino, existió una correlación directa en la prueba de 50 metros con el peso graso, porcentaje graso, suma de pliegues y perímetro de la cadera (p<0,05). En conslusión, un mayor peso y porcentaje muscular permite un mejor rendimiento en las pruebas de 10 metros, 50 metros y 5x10 metros. Sin embargo, un mayor porcentaje y peso graso influye negativamente en el rendimiento de las pruebas anteriores. La composición corporal parece ser un parámetro importante de control para el rendimiento en pruebas de velocidad y cambios de dirección.

Referencias bibliográficas

  • Abe, T., Fukashiro, S., Harada, Y., y Kawamoto, K. (2001). Relationship Between Sprint Performance and Muscle Fascicle Length in Female Sprinters. Journal of Physiological Anthropology and Applied Human Science, 20(2), 141–147.
  • Abe, T., Kawamoto, K., Dankel, S. J., Bell, Z. W., Spitz, R. W., Wong, V., y Loenneke, J. P. (2019). Longitudinal associations between changes in body composition and changes in sprint performance in elite female sprinters. European Journal of Sport Science, 1–6.
  • Ackland, T. R., Lohman, T. G., Sundgot-Borgen, J., Maughan, R. J., Meyer, N. L., Stewart, A. D., y Müller, W. (2012). Current Status of Body Composition Assessment in Sport. Sports Medicine, 42(3), 227–249.
  • Babić, V., Čoh, M., y Dizdar, D. (2011). Diferences in kinematic parameters of athletes of different running quality. Biology of Sport, 28(2).
  • Barbieri, D., Zaccagni, L., Babić, V., Rakovac, M., MiÅ¡igoj-Duraković, M., y Gualdi-Russo, E. (2017). Body composition and size in sprint athletes. The Journal of Sports Medicine and Physical Fitness, 57(9), 1142–1146.
  • Bredella, M. A. (2017). Sex differences in body composition. In Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity (pp. 9–27). Springer.
  • Chaouachi, A., Manzi, V., Chaalali, A., Wong, del P., Chamari, K., y Castagna, C. (2012). Determinants analysis of change-of-direction ability in elite soccer players. The Journal of Strength & Conditioning Research, 26(10), 2667–2676.
  • Cheuvront, S. N., Carter, R., DeRuisseau, K. C., y Moffatt, R. J. (2005). Running Performance Differences between Men and Women. Sports Medicine, 35(12), 1017–1024.
  • Condello, G., Kernozek, T. W., Tessitore, A., y Foster, C. (2016). Biomechanical Analysis of a Change-of-Direction Task in College Soccer Players. International Journal of Sports Physiology and Performance, 11(1), 96–101.
  • Darrall-Jones, J. D., Jones, B., y Till, K. (2016). Anthropometric, Sprint, and High-Intensity Running Profiles of English Academy Rugby Union Players by Position. Journal of Strength and Conditioning Research, 30(5), 1348–58.
  • Delextrat, A., Grosgeorge, B., y Bieuzen, F. (2015). Determinants of performance in a new test of planned agility for young elite basketball players. International Journal of Sports Physiology and Performance, 10(2), 160–165.
  • Deliens, T., Deforche, B., De Bourdeaudhuij, I., y Clarys, P. (2015). Changes in weight, body composition and physical fitness after 1.5 years at university. European Journal of Clinical Nutrition, 69(12), 1318.
  • Gabbett, T. J., Kelly, J. N., y Sheppard, J. M. (2008). Speed, change of direction speed, and reactive agility of rugby league players. Journal of Strength and Conditioning Research, 22(1), 174–81.
  • Green, S. (1995). Measurement of anaerobic work capacities in humans. Sports Medicine, 19(1), 32–42.
  • Haugen, T., Tønnessen, E., y Seiler, S. (2015). 9.58 and 10.49: Nearing the Citius End for 100 m? International Journal of Sports Physiology and Performance, 10(2), 269–272.
  • Herbst, K. L., y Bhasin, S. (2004). Testosterone action on skeletal muscle. Current Opinion in Clinical Nutrition and Metabolic Care, 7(3), 271–7.
  • Hervás, G., Ruiz-Litago, F., Irazusta, J., Fernández-Atutxa, A., Fraile-Bermúdez, A., y Zarrazquin, I. (2018). Physical activity, physical fitness, body composition, and nutrition are associated with bone status in university students. Nutrients, 10(1), 61.
  • Hirsch, K. R., Smith-Ryan, A. E., Trexler, E. T., y Roelofs, E. J. (2016). Body composition and muscle characteristics of division I track and field athletes. Journal of Strength and Conditioning Research/National Strength & Conditioning Association, 30(5), 1231.
  • Jaworowski, A., Porter, M. M., Holmback, A. M., Downham, D., y Lexell, J. (2002). Enzyme activities in the tibialis anterior muscle of young moderately active men and women: relationship with body composition, muscle cross-sectional area and fibre type composition. Acta Physiologica Scandinavica, 176(3), 215–225.
  • Kanehisa, H., Ikegawa, S., Tsunoda, N., y Fukunaga, T. (1994). Cross-sectional areas of fat and muscle in limbs during growth and middle age. International Journal of Sports Medicine, 15(07), 420–425.
  • Karastergiou, K., Smith, S. R., Greenberg, A. S., y Fried, S. K. (2012). Sex differences in human adipose tissues–the biology of pear shape. Biology of Sex Differences, 3(1), 13.
  • Kin-Isler, A., Ariburun, B., Ozkan, A., Aytar, A., y Tandogan, R. (2008). The relationship between anaerobic performance, muscle strength and sprint ability in American football players. Isokinetics and Exercise Science, 16(2), 87–92.
  • Kumagai, K., Abe, T., Brechue, W. F., Ryushi, T., Takano, S., y Mizuno, M. (2000). Sprint performance is related to muscle fascicle length in male 100-m sprinters. Journal of Applied Physiology, 88(3), 811–816.
  • Lockie, R., Dawes, J., y Jones, M. (2018). Relationships between linear speed and lowerbody power with change-of-direction speed in national collegiate athletic association divisions I and II women soccer athletes. Sports, 6(2), 30.
  • Majumdar, A. S., y Robergs, R. A. (2011). The science of speed: Determinants of performance in the 100 m sprint. International Journal of Sports Science & Coaching, 6(3), 479–493.
  • Malina, R. M., y Geithner, C. A. (2011). Body composition of young athletes. American Journal of Lifestyle Medicine, 5(3), 262–278.
  • Mascherini, G., Castizo-Olier, J., Irurtia, I., Petri, C., y Galanti, G. (2018). Differences between the sexes in athletes’ body composition and lower limb bioimpedance values. Muscles Ligaments Tendons Journal, 7(4), 573–581.
  • Matlák, J., Tihanyi, J., y Rácz, L. (2016). Relationship between reactive agility and change of direction speed in amateur soccer players. Journal of Strength and Conditioning Research, 30(6), 1547–1552.
  • Mayhew, J. L., Hancock, K., Rollison, L., Ball, T. E., y Bowen, J. C. (2001). Contributions of strength and body composition to the gender difference in anaerobic power. Journal of Sports Medicine and Physical Fitness, 41(1), 33.
  • Mazić, S., Lazović, B., Đelić, M., Suzić-Lazić, J., Aćimović, T., y Brkić, P. (2014). Body composition assessment in athletes: a systematic review. Medicinski Pregled, 67(7–8), 255–260.
  • Melvin, M. N., Smith-Ryan, A. E., Wingfield, H. L., Ryan, E. D., Trexler, E. T., y Roelofs, E. J. (2014). Muscle Characteristics and Body Composition of NCAA Division I Football Players. Journal of Strength and Conditioning Research, 28(12), 3320–3329.
  • Meylan, C., McMaster, T., Cronin, J., Mohammad, N. I., Rogers, C., y DeKlerk, M. (2009). Single-Leg Lateral, Horizontal, and Vertical Jump Assessment: Reliability, Interrelationships, and Ability to Predict Sprint and Change-of-Direction Performance. Journal of Strength and Conditioning Research, 23(4), 1140–1147.
  • Miller, A. E. J., MacDougall, J. D., Tarnopolsky, M. A., y Sale, D. G. (1993). Gender differences in strength and muscle fiber characteristics. European Journal of Applied Physiology and Occupational Physiology, 66(3), 254–262.
  • Morin, J.-B., Bourdin, M., Edouard, P., Peyrot, N., Samozino, P., y Lacour, J.-R. (2012). Mechanical determinants of 100-m sprint running performance. European Journal of Applied Physiology, 112(11), 3921–3930.
  • Nimphius, S., McGuigan, M. R., y Newton, R. U. (2010). Relationship between strength, power, speed, and change of direction performance of female softball players. Journal of Strength and Conditioning Research, 24(4), 885–95.
  • Perez-Gomez, J., Rodriguez, G. V., Ara, I., Olmedillas, H., Chavarren, J., GonzálezHenriquez, J. J., … Calbet, J. A. L. (2008). Role of muscle mass on sprint performance: gender differences? European Journal of Applied Physiology, 102(6), 685–694.
  • Popowczak, M., Rokita, A., Świerzko, K., Szczepan, S., Michalski, R., y Świerzko, K., (2019). Are Linear Speed and Jumping Ability Determinants of Change of Direction Movements in Young Male Soccer Players? Journal of Sports Science & Medicine, 18(1), 109.
  • Porta, J., Galiano, D., Tejedo, A., y González, J. M. (1993). Valoración de la composición corporal. Utopías y realidades. In F. Esparza (Ed.), Manual de Cineantropometría. Monografías. (pp. 113–170). Madrid.
  • Russ, D. W., Lanza, I. R., Rothman, D., y KentBraun, J. A. (2005). Sex differences in glycolysis during brief, intense isometric contractions. Muscle & Nerve, 32(5), 647–655.
  • Shi, H., y Clegg, D. J. (2009). Sex differences in the regulation of body weight. Physiology & Behavior, 97(2), 199–204.
  • Stevens, J., Katz, E. G., y Huxley, R. R. (2010). Associations between gender, age and waist circumference. European Journal of Clinical Nutrition, 64(1), 6.
  • Suchomel, T. J., Nimphius, S., y Stone, M. H. (2016). The Importance of Muscular Strength in Athletic Performance. Sports Medicine, 46(10), 1419–1449.
  • Thomas, T. D. C., Comfort, P., y Jones, P. A. (2018). Comparison of change of direction speed performance and asymmetries between team-sport athletes: Application of change of direction deficit. Sports, 6(4), 174.
  • Weber, C. L., Chia, M., y Inbar, O. (2006). Gender differences in anaerobic power of the arms and legs-a scaling issue. Medicine and Science in Sports and Exercise, 38(1), 129–37.
  • Weyand, P. G., Sternlight, D. B., Bellizzi, M. J., y Wright, S. (2000). Faster top running speeds are achieved with greater ground forces not more rapid leg movements. Journal of Applied Physiology, 89(5), 1991–1999.